Suppose you were asked to find a function F whose derivative is $f(x) = 3x^2$. From your knowledge of derivatives, you would probably say that

$$F(x) = x^3$$
 because $\frac{d}{dx}[x^3] = 3x^2$.

The function *F* is an *antiderivative* of *f*.

Definition of an Antiderivative

A function *F* is an **antiderivative** of *f* on an interval *I* if F'(x) = f(x) for all *x* in *I*.

Note that F is called *an* antiderivative of f, rather than *the* antiderivative of f. To see why, observe that

 $F_1(x) = x^3$, $F_2(x) = x^3 - 5$, and $F_3(x) = x^3 + 97$

are all antiderivatives of $f(x) = 3x^2$. In fact, for any constant *C*, the function given by $F(x) = x^3 + C$ is an antiderivative of *f*.

THEOREM 4.1 Representation of Antiderivatives

If *F* is an antiderivative of *f* on an interval *I*, then *G* is an antiderivative of *f* on the interval *I* if and only if *G* is of the form G(x) = F(x) + C, for all *x* in *I* where *C* is a constant.

PROOF

Using Theorem 4.1, you can represent the entire family of antiderivatives of a function by adding a constant to a *known* antiderivative. For example, knowing that $D_x[x^2] = 2x$, you can represent the family of *all* antiderivatives of f(x) = 2x by

 $G(x) = x^2 + C$ Family of all antiderivatives of f(x) = 2x

where *C* is a constant. The constant *C* is called the **constant of integration**. The family of functions represented by *G* is the **general antiderivative** of *f*, and $G(x) = x^2 + C$ is the **general solution** of the *differential equation*

G'(x) = 2x. Differential equation

A **differential equation** in x and y is an equation that involves x, y, and derivatives of y. For instance, y' = 3x and $y' = x^2 + 1$ are examples of differential equations.

Ex.1 Solving a Differential Equation

Find the general solution of $\frac{dy}{dx} = 2x^{-3}$, and check the result by differentiation.

Notation for Antiderivatives

When solving a differential equation of the form

$$\frac{dy}{dx} = f(x)$$

it is convenient to write it in the equivalent differential form

dy = f(x) dx.

The operation of finding all solutions of this equation is called **antidifferentiation** (or **indefinite integration**) and is denoted by an integral sign \int . The general solution is denoted by

The expression $\int f(x) dx$ is read as the *antiderivative of f with respect to x*. So, the differential dx serves to identify x as the variable of integration. The term **indefinite integral** is a synonym for antiderivative.

NOTE In this text, the notation $\int f(x) dx = F(x) + C$ means that *F* is an antiderivative of *f* on an interval.

Basic Integration Rules

The inverse nature of integration and differentiation can be verified by substituting F'(x) for f(x) in the indefinite integration definition to obtain

$$\int F'(x) \, dx = F(x) + C.$$

Integration is the "inverse" of differentiation.

Moreover, if $\int f(x) dx = F(x) + C$, then

$$\frac{d}{dx}\left[\int f(x) \, dx\right] = f(x).$$

Differentiation is the "inverse" of integration.

These two equations allow you to obtain integration formulas directly from differentiation formulas, as shown in the following summary.

Basic Integration Rules

Differentiation FormulaIntegration Formula
$$\frac{d}{dx}[C] = 0$$
 $\int 0 \, dx = C$ $\frac{d}{dx}[kx] = k$ $\int k \, dx = kx + C$ $\frac{d}{dx}[kf(x)] = kf'(x)$ $\int kf(x) \, dx = k \int f(x) \, dx$ $\frac{d}{dx}[f(x) \pm g(x)] = f'(x) \pm g'(x)$ $\int [f(x) \pm g(x)] \, dx = \int f(x) \, dx \pm \int g(x) \, dx$ $\frac{d}{dx}[x^n] = nx^{n-1}$ $\int x^n \, dx = \frac{x^{n+1}}{n+1} + C, \quad n \neq -1$ $\frac{d}{dx}[\sin x] = \cos x$ $\int \cos x \, dx = \sin x + C$ $\frac{d}{dx}[\cos x] = -\sin x$ $\int \sin x \, dx = -\cos x + C$ $\frac{d}{dx}[\tan x] = \sec^2 x$ $\int \sec^2 x \, dx = \tan x + C$ $\frac{d}{dx}[\cot x] = -\csc^2 x$ $\int \sec^2 x \, dx = -\cot x + C$ $\frac{d}{dx}[\cot x] = -\csc^2 x$ $\int \csc^2 x \, dx = -\cot x + C$ $\frac{d}{dx}[\cot x] = -\csc x \cot x$ $\int \csc x \cot x \, dx = -\csc x + C$

NOTE Note that the Power Rule for Integration has the restriction that $n \neq -1$. The evaluation of $\int 1/x \, dx$ must wait until the introduction of the natural logarithmic function in Chapter 5.

Ex.2 Applying the Basic Integration Rules

Find the indefinite integral of $\int (x^3 - 10x - 3) dx$, and check the result by differentiation.

In Example 2, note that the general pattern of integration is similar to that of differentiation.

Ex.4 Rewriting Before Integrating and Applying the Basic Integration Rules Find the indefinite integral of $\int \left(\sqrt{x} + \frac{1}{2\sqrt{x}}\right) dx$, and check the result by differentiation.

Ex.5 Rewriting Before Integrating and Applying the Basic Integration Rules Find the indefinite integral of $\int (2t^2 - 1)^2 dt$, and check the result by differentiation.

Ex.6 Rewriting Before Integrating and Applying the Basic Integration Rules Find the indefinite integral of $\int \left(\frac{y^2 + 2y - 3}{y^4}\right) dy$, and check the result by differentiation. **Ex.7** Rewriting Before Integrating and Applying the Basic Integration Rules Find the indefinite integral of $\int (\theta^2 + \sec^2(\theta)) d\theta$, and check the result by differentiation.

Ex.8 Rewriting Before Integrating and Applying the Basic Integration Rules Find the indefinite integral of $\int [\tan(z) - \sec(z)] \sec(z) dz$, and check the result by differentiation.

Initial Conditions and Particular Solutions

You have already seen that the equation $y = \int f(x) dx$ has many solutions (each differing from the others by a constant). This means that the graphs of any two antiderivatives of f are vertical translations of each other. For example, Figure 4.2 shows the graphs of several antiderivatives of the form

$$y = \int (3x^2 - 1)dx = x^3 - x + C$$
 General solution

for various integer values of C. Each of these antiderivatives is a solution of the differential equation

$$\frac{dy}{dx} = 3x^2 - 1.$$

In many applications of integration, you are given enough information to determine a **particular solution.** To do this, you need only know the value of y = F(x) for one value of x. This information is called an **initial condition.** For example, in Figure 4.2, only one curve passes through the point (2, 4). To find this curve, you can use the following information.

$F(x) = x^3 - x + C$	General solution
F(2) = 4	Initial condition

By using the initial condition in the general solution, you can determine that F(2) = 8 - 2 + C = 4, which implies that C = -2. So, you obtain

$$F(x) = x^{3} - x - 2.$$
Particular solution
Particular solution
$$F(x) = x^{3} - x - 2.$$
Particular solution
$$F(x) = x^{3} - x - 2.$$
Particular solution
$$F(x) = x^{3} - x - 2.$$
Particular solution
$$F(x) = x^{3} - x - 2.$$
Particular solution
$$F(x) = x^{3} - x - 2.$$
Particular solution
$$F(x) = x^{3} - x - 2.$$
Particular solution
$$F(x) = x^{3} - x - 2.$$
Particular solution
$$F(x) = x^{3} - x - 2.$$
Particular solution
$$F(x) = x^{3} - x - 2.$$
Particular solution
$$F(x) = x^{3} - x - 2.$$
Particular solution
$$F(x) = x^{3} - x - 2.$$
Particular solution
$$F(x) = x^{3} - x - 2.$$
Particular solution
$$F(x) = x^{3} - x - 2.$$
Particular solution
$$F(x) = x^{3} - x - 2.$$
Particular solution
$$F(x) = x^{3} - x - 2.$$
Particular solution
$$F(x) = x^{3} - x - 2.$$
Particular solution
$$F(x) = x^{3} - x - 2.$$
Particular solution
$$F(x) = x^{3} - x - 2.$$
Particular solution
$$F(x) = x^{3} - x - 2.$$
Particular solution
$$F(x) = x^{3} - x - 2.$$
Particular solution
$$F(x) = x^{3} - x^{3}$$

 $F(x) = x^3 - x + C$

The particular solution that satisfies the initial condition F(2) = 4 is $F(x) = x^3 - x - 2$. Figure 4.2

Ex.9 Finding a Particular Solution

Find the general solution of

$$F'(x) = \frac{1}{x^2}, \quad x > 0$$

and find the particular solution that satisfies the initial condition F(1) = 0.

The particular solution that satisfies the initial condition F(1) = 0 is F(x) = -(1/x) + 1, x > 0. Figure 4.3

Ex.10 Solving a Vertical Motion Problem

A ball is thrown upward with an initial velocity of 64 feet per second from an initial height of 80 feet.

- **a.** Find the position function giving the height *s* as a function of the time *t*.
- **b.** When does the ball hit the ground?

Figure 4.4

Before you begin the exercise set, be sure you realize that one of the most important steps in integration is *rewriting the integrand* in a form that fits the basic integration rules. To illustrate this point further, here are some additional examples.

Original Integral	Rewrite	Integrate	Simplify
$\int \frac{2}{\sqrt{x}} dx$	$2\int x^{-1/2} dx$	$2\left(\frac{x^{1/2}}{1/2}\right) + C$	$4x^{1/2} + C$
$\int (t^2 + 1)^2 dt$	$\int (t^4 + 2t^2 + 1) dt$	$\frac{t^5}{5} + 2\left(\frac{t^3}{3}\right) + t + C$	$\frac{1}{5}t^5 + \frac{2}{3}t^3 + t + C$
$\int \frac{x^3 + 3}{x^2} dx$	$\int (x + 3x^{-2}) dx$	$\frac{x^2}{2} + 3\left(\frac{x^{-1}}{-1}\right) + C$	$\frac{1}{2}x^2 - \frac{3}{x} + C$
$\int \sqrt[3]{x}(x-4) dx$	$\int (x^{4/3} - 4x^{1/3}) dx$	$\frac{x^{7/3}}{7/3} - 4\left(\frac{x^{4/3}}{4/3}\right) + C$	$\frac{3}{7}x^{7/3} - 3x^{4/3}$